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Note 

On the Solution of the Ambartsumian-Chandrasekhar Equation by 
Monotone Iteration Processes 

I. INTRODUCTION 

In the theory of radiative transfer in semi-infinite atmospheres an important 
part is played by the nonlinear integral equation [2, 61 

~(4 = 1 + ~(4 J’,’ y& ~Wf(0 & (1) 

where the characteristic function f is nonnegative and satisfies Jif(t) dt < +. If we 
set z(x) = y(x)f(x), (1) can be written in the form 

44 = f(x) + d-4 s,l -I& z(t) dt 

or, if operator notation is used, we can write 

z = Tz =f+ B(z, z). (1’) 

It has been shown [3,4] that Eq. (1) has a unique solution z* in the set 

s = {z E K : II z II \<8 + Ilflh 

which is mapped into itself by T. Here we have denoted by Ij 1) the L1 norm and by 
K the positive cone of the real vector space L,[O, 11, i.e. the set of functions of 
L,[O, 11 which are nonnegative almost everywhere on [0, 11. The cone Kinduces on 
L,[O, l] a partial ordering: u precedes u if and only if o - u E K. The definition of 
monotone increasing (decreasing) sequence {u,} in L,[O, l] follows in a natural way. 
In case of Eq. (1’) it can be shown that the sequence 

uo = f, u,+l = Tu, (2) 

is monotone increasing and uniformly convergent to z*. 
Iterative procedures for solving Eq. (1) have been analyzed by several authors; 

see, for example, Stibbs and Weir [12], Moore [8], Noble [9], Rall [ll]. Monotone 
iteration processes have been considered by Rall [lo] and Casadei [5]. 
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In Section II we shall establish a criterion for constructing a monotone decreasing 
sequence (~3 uniformly converging to z* so that two-sided approximations to z* 
are available, giving an estimate of the error at each stage of the process. Moreover, 
since the usual iteration process is often slowly convergent, a technique is des- 
cribed in Section III to accelerate the convergence of {u,] and {v,}. A numerical 
application of the given method is presented in Section IV. 

II. CONSTRUCTION OF A MONOTONE DECREASING SEQUENCE 

The result given below is analogous to that obtained in [lo] in case of isotropic 
scattering; an extension to a more general class of integral equations is described 
in [5]. 

THEOREM 1. Let the characteristic function f satisfy the condition 

0 < M = s,’ +tf(t) dt < a 

and denote by c a real number for which 

[l - 2M - (1 - 4M)1/2]/2M d c < min{l/(2 \\flj), [l - 2M + (1 - 4M)1’2]/2M}. (4) 

Let the function v be deJined by v(x) = (1 + c) f (x) V x E[O, 11. Then v ES and 
TV -v GO. 

Proof. 

(W(x) - v(x) =fW /Cl + d2 s,'~fW dt - ~1 

<f(x>Kl + 4" M - cl. 
By (3) the polynomial [(l + c)” M - c] has two distinct positive roots and by (4) 
the last term written is nonpositive. Moreover, from c < l/(2 /j f II) it follows that 
11 v I/ < jl f 11 + 4 and therefore v E S. Q.E.D. 

Remark 1. The interval defined by (4) is not empty since 

[l - 2M - (1 - 4M)li2]/2M < 1 

and, a fortiori, < l/(2 j] f Ii). 

Remark 2. The monotone decreasing sequence 

v, = v, ~,z+~ = TV, (5) 

is uniformly convergent to z* as can easily be seen following an argument analogous 
to that used in [4]. 
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III. A METHOD OF SPEEDING UP THE CONVERGENCE 

In this section we prove two propositions that provide a method of speeding up 
the convergence of (2) and (5) respectively. The proofs are based on the following 
properties of the bilinear operator B. Let U, u E K, u ,< v. It is easily seen that 

(9 B(u, 4 < B(u, 0); 
(ii) if a is a nonnegative real number, then (1 + a) B(v, v) - aB(u, u) < 

B((l + a) v - au, (1 + a) v - au); and 
(iii) if b, 0 ,( b < 1, is a real number, then 

B(bu + (1 - b) 21, bu + (1 - b) U) < bB(u, u) + (1 - b) B(v, u). 

The method described in Theorem 2 is an extension of that proposed by Albrecht 
[I] for solving certain systems of linear algebraic equations. 

THEOREM 2. Let u,, ES, and let u1 = Tu, , u2 = Tu, satisfy 0 < u2 - u, = d; 
let a be a positive real number such that 

a G (t + llfll - II u2 IIMI dll I (6.1) 
a(ul - u, - d) < d, (6.2) 

andput u* = u2 + ad. Then u* ES and u* - Tu* ,( 0. 

Proof. It is obviously true that u* E S by virtue of (6.1). In addition, using 
property (ii) we have 

u* - Tu* = (1 + a) B(u, , uJ - aB(u,, , u,,) - B((1 + a) u2 - au,, 

(1 +a)u, -4 

< BK1 + a) u1 - au0 , (1 + a> u1 - au01 - B((l + a) u2 - au1 , 
(1 + a) u2 - 4. 

From (6.2) and (i) it follows that the last expression is nonpositive. Q.E.D. 

Remark. The above method is independent of condition (3) and therefore can 
be always used to speed up the convergence of (2). 

To accelerate the convergence of sequence (5) we combine elements of both 
sequences {u,} and {v,}. The technique here has a direct analogy to that used in [13]. 

THEOREM 3. Let u, , v. E S, u, -C vo, and let u1 = Tu, , q = TV, satisfy 
u, - u, < 0, v1 - v. < 0; moreover let b, 0 < b < 1 be a real number for which 

b(u, - uo + uo - ~1) < no - 01 (7) 

and dejine v* = bu, + (1 - b) vl . Then u1 < v* < u1 and TV* - v* < 0.’ 

1 The relation g < h denotes that h - g E K, with h + g. For further terminology and notation 
about spaces with a cone see [3, 71. 
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Proof. Utilizing property (iii) we have 

TV* - v* = f + B(bu, + (1 - b) vl, bu, + (1 - b) 01) - (bu, + (1 - b) 24 

< B(bu, + (1 - b) a1 ) bu, + (1 - b) Vi) 
- B(buo + (1 - b) vg ) bu, + (1 - b) vO). 

From (7) and (i) it follows that the last expression is nonpositive. Q.E.D. 

Let us note that, for a > 0 and b > 0, u2 < u*, v* < v1 , i.e. the constructed 
elements lie closer to the solution than u2 , v1 . 

In conclusion, whenever condition (3) on f is satisfied, the procedure can be 
described as follows. 

Step 1. Set u0 =f; choose c satisfying (4) and set v0 = (1 + c)J 

Step 2. Iterate twice starting from u0 to obtain u1 , uZ and once from v0 to 
obtain v1 . 

Step 3. Construct u*, v* as indicated in Theorems 2 and 3 respectively. 

Step 4. Set u0 = u*, v0 = v* and go to Step 2. 
The process can be stopped at any stage when the convergence criterion is met. 

IV. NUMERICAL RESULTS 

Rall [lo] presents a detailed investigation of the problems arising during im- 
plementation of the method of monotone approximations on an automatic 
computing machine and describes an algorithm based upon the construction of 
lower and upper discrete bounding operators for T; an analogous discussion can 
also be found in [5]. 

Here we consider the equation [6, p. 1411 

z(x) = %(I - 2) + z(x) Jo1 * z(t) dt, 

to illustrate the accuracy and speed of the given acceleration technique. Actually, 
we have llfll = 3, M = & so that 3 - 2 d/z < c < 3. We put c = 4. Then u,, =f, 
v(j = i(l - 9). 

From the definition of u* and v* it is seen that, in actual computations, the 
constants a, b should be selected as large as possible, in order to get an improved 
estimate of z*; conditions (6.1), (6.2), and (7) ensure that they do not become “too 
large.” Moreover, we note that condition (6.1) can be rewritten as 

a G $0 - II u1 Il”)/(llfll + S II u1 II2 - II u1 II) 

58111714-7 
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because )I u2 - u1 II = II 24, II - II u1 II and II u2 II = /If/l + + )/ u1 ]I2 [3]. Therefore the 
explicit computation of // u2 11 is not needed. // U, /I can be evaluated with no addi- 
tional effort during the iteration which gives u2 . 

As the results show, the error is less than 0.5 x 1O-4 after six iterations (four 
from below and two from above) using acceleration (Table I), while the same 
performance is obtained after 11 iterations without acceleration (Table II). All 
results were obtained on the IBM 370/165 of the CNEN Computer Center using 
single precision arithmetic. 

TABLE I 

Approximate Solution of Equation (8) Using Acceleration 

t WI Ul * u2 * fJ2 * 01 * VO 

0 .25ooO .25000 .25000 
.l .24750 .26123 .26138 
.2 .24000 .25967 .25999 
.3 .22750 .25021 .25067 
.4 .21000 .23374 .23429 
.5 .18750 .21062 .21122 
.6 .16000 .18105 .18164 
.7 .12750 .14515 .14567 
.8 .09000 .10297 .10338 
.9 .047500 .054579 .054812 

1. 0 0 0 

.26140 .26269 

.26002 .26159 
.25070 .25230 
.23432 .23583 
.21125 .21260 
.18167 .I8281 
.14569 .14659 
.10339 .10401 
.054818 .055138 

0 0 

.33333 

.33000 
.32000 
.30333 
.28000 
.25000 
.21333 
.17000 
.12000 
.063333 

0 

TABLE II 

Approximate Solution of Equation (8) Using Sequences (2) and (5) 

t 4 4 4 08 V2 VII 

0 .25000 .25000 .25000 .25000 .25000 .33333 
.l .24750 .26138 a26138 .26139 .26230 .33000 
.2 .24000 .25998 .25999 .26000 .26156 .32000 
.3 .22750 .25065 .25067 .25068 .25264 .30333 
.4 .21000 .23427 .23429 .23431 .23646 .28000 
.5 .18750 .21119 .21122 .21124 .21340 .25000 
.6 .16000 .18162 .18164 .18166 .18368 .21333 
.7 .12750 .14565 .14567 .14569 .14741 .17000 
.8 .09ooo .10336 .10338 -10339 .10467 .12000 
.9 .047500 .054801 .054810 .054818 .055525 .063333 

1. 0 0 0 0 0 0 
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